Statistics of the contact network in frictional and frictionless granular packings.

نویسندگان

  • Leonardo E Silbert
  • Gary S Grest
  • James W Landry
چکیده

Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f identical with F/(-)F is the contact force F normalized by the average value (-)F. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f=1, with additional features at forces smaller than the average that depend on mu. Additional information beyond the one-point force distribution functions is provided in the form of the force-force spatial distribution function and the contact point radial distribution function. These quantities indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three-dimensional, unloaded packings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isostaticity at frictional jamming.

Amorphous packings of frictionless, spherical particles are isostatic at jamming onset, with the number of constraints (contacts) equal to the number of degrees of freedom. Their structural and mechanical properties are controlled by the interparticle contact network. In contrast, amorphous packings of frictional particles are typically hyperstatic at jamming onset. We perform extensive numeric...

متن کامل

The stress response in confined arrays of frictional and frictionless particles

Stress transmission inside three-dimensional granular packings is investigated using computer simulations. Localized force perturbation techniques are implemented for frictionless and frictional shallow, ordered, granular arrays confined by solid boundaries for a range of system sizes. Stress response profiles for frictional packings agree well with the predictions for the semi-infinite halfpla...

متن کامل

Elasticity from the force network ensemble in granular media.

Transmission of forces in static granular materials is studied within the framework of the force network ensemble, by numerically evaluating the mechanical response of hexagonal packings of frictionless grains and rectangular packings of frictional grains. In both cases, close to the point of application of the overload, the response is nonlinear and displays two peaks, while at larger length s...

متن کامل

Statistics of frictional families.

We develop a theoretical description for mechanically stable frictional packings in terms of the difference between the total number of contacts required for isostatic packings of frictionless disks and the number of contacts in frictional packings, m=Nc0 - Nc. The saddle order m represents the number of unconstrained degrees of freedom that a static packing would possess if friction were remov...

متن کامل

Geometry of frictionless and frictional sphere packings.

We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002